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ABSTRACT 

A review was made o f  the pr inc ipa l  
thermoplastics used t o  fabr ica te  

h igh  performance composites. Neat 
r e s i n  t e n s i l e  and f rac tu re  tough- 
ness propert ies,  glass t r a n s i t i o n  
temperatures (Tg), c r y s t a l l i n e  

me l t  temperatures (Tm) and appro- 
ximate processing condi t ions are 
presented. Mechanical propert ies 
o f  carbon f i b e r  composites made 

from many o f  these thermoplastics 

are given, i nc lud ing  f lexura l ,  
l ong i tud ina l  tens i le ,  transverse 
t e n s i l e  and in-plane shear proper- 

t i e s  as we l l  as shor t  beam shear 
and compressive strengths and 
in te r l am ina r  f rac tu re  toughness. 
A t t r a c t i v e  features and problems 

invo lved i n  the use o f  thermoplas- 
t i c s  as matrices f o r  high perform- 
ance composites are discussed. 

INTRODUCTION 

The purpose o f  t h i s  paper i s  t o  
give a t ime ly  review of the 

proper t ies  o f  the p r inc ipa l  candi - 
date thermoplastic (TP) resins 
t h a t  e i t h e r  have been studied as 
composite matrices o r  are cur ren t -  

l y  undergoing detai  1 ed experi - 
mental /developmental evaluat ion as 

matrices. This review i s  
espec ia l l y  appropriate a t  t h i s  
t ime because o f  the heavy emphasis 
being p l  aced on . the development 
and app l ica t ion  o f  TPs as matrices 
f o r  f i b e r  re in fo rced composites on 
advanced A i r  Force weapons systems 

such as the Advanced Tact ical  
F igh te r  (ATF). 

The reader should note t h a t  the 
data included i n  t h i s  paper were 

obtained from a la rge  number o f  
sources, mostly mater ia ls 

suppliers. Var iat ions i n  t e s t  
methods from source t o  source are 
inev i tab le .  There i s  no guarantee 
t h a t  ASTM procedures were 

employed. 
normalize composites data t o  

constant f i b e r  vol ume f rac t ion .  
Mechanical propert ies o f  a p a r t i -  

No attempt was made t o  

Use o f  t rade names o r  manufacturers does no t  cons t i t u te  an o f f i c i a l  
endorsement, e i t h e r  expressed o r  imp1 ied, by the National Aeronautics and 
Space Administrat ion. 



c u l a r  composite mat r ix  w i l l  vary 
w i t h  f i b e r  type and w i t h i n  a f i b e r  

type the date t h a t  f i b e r  was 
produced. Problems with r e s i n  

reproduci b i  1 i ty  , cons4 stency , and 

processabi 1 i ty a1 so cause property 
var ia t ions  as new mater ia ls mature 

i n  t h e i r  development from experi-  

mental t o  commercial products. 
Consequently, the reader should 
bear these caveats i n  mind i n  
us ing  t h i s  data. 

judgment should be exercised i n  
making comparisons between 
mater ia l  s. 

Care and sound 

GENERAL FEATURES OF 

THERMOPLASTIC MATRICES 

Three o f  the most a t t r a c t i v e  

features o f fe red  by TPs as compo- 
s i t e  matrices are l i s t e d  i n  Table 

I. The major i t y  o f  appl icat ions 
i nvo l v ing  a i r c r a f t  structures 
demand tha t  components have 

super ior  damage tolerance and 

del ami nation resf  stance. Most 
h igh  performance TPs o f f e r  out- 

standing in te r laminar  f rac tu re  
toughness and acceptable post- 
impact compression response. 

They also o f f e r  an even bigger 
payof f :  the p o t e n t i a l  of l ow  cos t  

manufacturing. By tak ing  advan- 

tage o f  the inherent  chemical 

nature of TP molecules t o  undergo 
thermally- induced flow, shaped 

a r t i c l e s  can be fabr icated a t  

e levated temperatures by r e l a t i v e -  

l y  fas t  processing methods. Con- 
sequently, time i s  p r o f i t a b l y  ex- 
changed f o r  temperature. Prodi - 
gious and ambitious programs are  

underway throughout the indus t ry  
t o  develop cos t -e f fec t i ve  process- 
i n g  technology fo r  TP mater ia ls.  
This e f f o r t  i s  p a r t l y  catalyzed by 
progressive A i r  Force contractual  

a c t i v i t i e s .  

Other a t t r a c t i v e  benef i t s  o f  TP 

composites include i n d e f i n i t e  
prepreg l i f e ,  a b i l i t y  i n  c e r t a i n  
processes t o  co r rec t  a flawed 

part,  and the ease w i th  which TP 
resins can be q u a l i t y  con t ro l l ed  
dur ing t h e i r  manufacture. The 

l a t t e r  i s  due, i n  part ,  because o f  
t h e i r  less  complex formulations 

and t h e i r  inherent s t a b i l i t y  a t  
ambient condit ions. 

The major problems facing TP 

composites are ou t l i ned  i n  Table 

11. TP prepreg o f  the q u a l i t y  
general ly associated w i th  standard 

177°C cure epoxies i s  d i f f i c u l t  t o  

fabr ica te .  E i t h e r  hot/mel t o r  

so lu t i on  methods have t o  be 

employed. Both have t h e i r  
problems. I n  the former, tempera- 

tu res  general ly above 650°F have 

t o  be employed i n  order t o  achieve 
a melt  v i scos i t y  s u f f i c i e n t l y  low 
t o  wet ou t  6,000-12,000 f i lament  

carbon f i b e r  tow. Solut ion pre- 

pregging t o  produce uni-tape i s  
not an advanced state-of- the-art  

process i n  indus t ry  because o f  the  
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heavy emphasis i n  the past w i t h  

sol  vent1 ess epoxy coatings and the 
s t r i c t  a i r  q u a l i t y  standards now 
i n  force. Further, many solvents, 

espec ia l l y  a p r o t i c  organic 
l i qu ids ,  are d i f f i c u l t  t o  remove 

dur ing  prepreg B-staging o r  compo- 

s i t e  fab r i ca t i on .  Solvents a lso  
can o f f e r  f i r e ,  explosion and 
hea l th  hazards. These problems 
can lead t o  non-uniform prepreg 

t h a t  contains misal igned and wavy 
f ibers,  r e s i n - r i c h  and resin-poor 

areas, gaps, and poor f i b e r  
wett ing. TP prepreg general ly has 

very l i t t l e  drape, unless powder 

impregnated, and no tack, unless 

t a c k i f i e r s ,  solvents, o r  
p l a s t i c i z e r s  are added. 

The processing of TP prepreg i n t o  

shaped composite s t ruc tu re  af fords 
many problems which are l i s t e d  i n  

d e t a i l  i n  Table 11. One o r  more 
of these d i f f i c u l t i e s  i s  always 
present regardless o f  the fabr ica- 
ti on technique employed. Edge 

buckl ing, f i b e r  misalignment, 
porosi ty,  and p a r t  un i fo rmi ty  are 

a lso  continuous problems i n  
thermoformi ng TP composites. 

F i n a l l y ,  the time-dependent 
p roper t ies  o f  most TP composites 

need t o  be f u l l y  characterized so 
t h a t  creep and f a t i g u e  problems 

w i l l  no t  become a Pandora's box. 

PRINCIPAL HIGH PERFORMANCE 
THERMOPLASTICS 

Sixteen p r inc ipa l  thermoplastics 
considered as candidates t o  

fabr ica te  high performance 

composites are shown i n  Table 111 
along w i t h  t h e i r  supplier, Tg, 
Tm ( f o r  semi -c rys ta l l ine  poly-  

mers), and approximate maximum 
processing temperature. The f i r s t  

f i v e  are polyarylene ether o r  su l -  
f i d e  polymers, three o f  which are 
semicrystal l ine.  The next three 
are amide o r  amideimide composi- 

t ions, fol lowed by four  poly-  
imides. Three polysulfones and 
one polyester complete the l i s t .  
A l l  except the J-polymer are 

heavi ly aromatic i n  character. 
The dominant chemical s t ruc tu re  o f  
a l l  polymers except the f i v e  
l a t e s t  compositions (APC-HTX, PXM 

8505, PAS-2, Torlon AIX638, and 
Avimid K-111) are known. I n  these 
eleven systems, the chemical 
f l e x i  b i l  i z i n g  groups between 

phenyl r i ngs  i n  the backbone 
include isopropyl idene, carbonyl, 

oxygen, su l fu r ,  and sulfone. 

It i s  notable t h a t  the average dry 
Tg value o f  the polyimides and 

polyamideimides i s  higher than the 
average Tg from any other polymer 

class. Three o f  the f i v e  l a t e s t  
compositions are polyarylene 
ethers o r  su l f i des  and have much 
higher Tg values than t h e i r  
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predecessors (e. g., APC-HTX vs. 
PEEK, P A S 4  vs. PPS). The Tg 
values were increased i n  order t o  

a f fo rd  improved wet 177°C proper- 
t i e s  f o r  ATF appl icat ions.  Most 

o f  the polyarylene ethers and 
polyimi des are candidate 177"CIAFT 
resins. J-Polymer's Tg i s  too 

low. Torlon C i s  too d i f f i c u l t  t o  
process and the three polysul  fones 
are too moisture and solvent 
sensit ive. 

Processing temperatures f o r  a l l  16 
polymers are extremely high and 
range from 329" t o  420°C. Proces- 

s ing  pressures range from 100 t o  

300 psi  f o r  conventional press 
moldings wh i le  processing times 
vary from 1 t o  13 hours. Most TPs 

use short  cycles; Avimid K - I 1 1  
requires a much longer cure 
because chain growth occurs with 
the evolut ion o f  condensation 

v o l a t i l e s  (and residual  solvent). 

NEAT RESIN PROPERTIES 

Table I V  l i s t s  the t e n s i l e  and 
f rac tu re  toughness proper t ies  o f  
14 o f  the p r inc ipa l  TPs shown i n  
Table 111. Values f o r  APC-HTX 

were no t  ava i lab le  and J-Polymer 

was omitted because o f  i t s  l o w  
Tg. A1 though t e n s i l e  strengths 

are extremely notch sensi t ive,  
most o f  the newer polyarylene 
ethers, polysul  f i des  and poly- 

imides have very respectable 

values i n  the range from 14 t o  17 
Ksi . 
Tensi le moduli should be above 450 
Ksi t o  achieve acceptable compo- 

s i t e  compression strengths. The 
polysulfones f a l l  way below t h i s  
value; PXM 8505 and Torlon AIX638 
appear t o  be marginal; most o f  the 

polyimides are we l l  above it. The 
high value f o r  PIS02 stands out 
and helps exp la in  why some o f  the  

PIS02 composite strengths are 
outstanding. The Xydar SRT-300 i s  
a 1 i q u i  d c rys ta l  1 i ne polyester 
whose t e n s i l e  propert ies are 
outstanding, as would be expected 
f o r  an ordered molecule. I n  t h i s  
case, the high value might no t  
trans1 ate i nto  h igh  composite 

compression strength; r e s i n  
compression modulus might be a 
b e t t e r  ind ica tor .  

Neat res in  f rac tu re  energies 

(G lC l  between 5 and 10 i n - l b / i n 2  
should give composites w i th  
acceptable in te r laminar  f rac tu re  

toughness. Values above 10 
in - lb / in2 ,  wh i le  excel lent ,  a re  
o v e r k i l l  and should not be 

obtained a t  the expense o f  some 

other property such as hot/wet 
strength o r  modulus. A l l  the 
values l i s t e d  i n  Table I V  are 

e i t h e r  acceptable o r  excel 1 ent. 

Notched I t o d  impact strengths have 
not been cor re la ted  w i th  composite 
in te r laminar  f rac tu re  toughness. 
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COMPOSITE PROPERTIES 

O f  the o r i g i n a l  16 TPs l i s t e d  i n  

Tab1 e I I I , composite proper t ies 
were obtained f o r  10 and are given 

i n  Tables V and V I .  Flexure 
strengths above 250 Ksi are 

excel lent ;  on ly  Udel P-1700 and 
PPS f a l l  s u b s t a n t i a l l y  below t h i s  

value, the l a t t e r  probably because 
of e i t h e r  poor f i b e r - r e s i n  adhe- 
s ion o r  f i b e r  damage. Flexure 
moduli l i s t e d  i n  Table V are very 

good; values should general ly be 
i n  the 16-19 Msi range. 

Short beam shear strengths 

general ly should be above 14 Ksi, 
where most 177OC cure epoxies 

f a l l .  The values l i s t e d  i n  Table 
V are acceptable b u t  not  outstand- 
i n g  and suggest premature f a i l u r e s  
on the compressive s ide o f  the 

specimen. The lower than desired 
compressive s t rengths tend t o  sub- 

s t a n t i a t e  t h i s .  Room temperature 
compressive s t rengths f o r  177°C 

cure epoxies average w e l l  above 
210 Ksi. Compressive strengths 

f o r  a l l  the TPs except one are 
below 165 Ksi. Yet the r e s i n  

moduli f o r  these same mater ia ls,  

i n  a l l  cases except Udel P-1700, 

are s u f f i c i e n t l y  high (450 t o  667 
Ksi; Table I V )  t h a t  one would pre- 

d i c t the i r compos i t e  compress i on 

strengths t o  be above 200 K s i .  , 

This  suggests t h a t  poor f i b e r  

a1 i gnment and poor f i ber-res4 n 

i n t e r f a c i a l  adhesion may be 

p lay ing a dest ruct ive r o l e  i n  
compression response. The low 

transverse strengths i n  a l l  cases 
except PEEK-APC-2, which i s  known 

t o  have exce l len t  f iber - res in  
i n t e r f a c i  a1 adhesion, ind icates 

t h a t  the remaining TPs have an 
in te r face  problem. Transverse 
t e n s i l e  strengths f o r  epoxies are 
general ly above 8-10 Ksi and they 

e x h i b i t  excel l e n t  i n t e r f a c i a l  
adhesion. 

It also seems poss ib le  t h a t  i n  

some cases f i b e r  damage due t o  
harsh prepreg fabr ica t ion  might be 

the c u l p r i t .  The general ly poor 
l ong i  t u d i  nal  tens i  1 e strengths , 
which are a f i b e r  dominated 
property, seem t o  suggest poor 
f i b e r  a1 i gnment and/or f i b e r  
damage. Values above 280-300 Ksi 

are obtained w i t h  177°C cure 
epoxies. 

In ter laminar  f r a c t u r e  toughness 

(GI~) values f o r  a l l  the TP 

composites are exce l len t  as 

expected, based on neat r e s i n  
f rac tu re  toughness. Values 

between 4 and 6 i n - l b / i n 2  are good 

and should a f f o r d  acceptable 

pos t-i mpac t compres s i  on strengths . 
THERMOSETS VERSUS THERMOPLASTICS 

Tabie V I 1  summarizes the t rade-o f f  
i n  proper t ies between thermosets 

and TPs as composite matrices. 

5 



177°C Cure epoxies and bismale- processing temperatures need t o  be 
imides can be considered thermo- understood, especia l ly  i n  l a r g e r  

se ts  f o r  purposes o f  t h i s  compari- s t ructures conta in ing cut-outs, 
son. I n  t h i s  paper, most o f  the c a v i t i e s  and b u i l t - u p  areas. Very 

l i s t e d  proper t ies have been 1 i t t l e  fl i g h t  experience even w i t h  
discussed i n  terms o f  the advan- TP secondary s t ruc tu re  ex is ts  t o  
tages and de f ic ienc ies  o f  TPs; i t  gauge e i t h e r  d u r a b i l i t y  o r  
i s  f e l t  TPs have t o  overcome maintenance requirements, l e t  

c e r t a i n  disadvantages. On the alone damage tolerance. The newer 

other  hand, i t  should be noted TP mater ia ls are general ly more 
t h a t  the thermosets have very few c o s t l y  than cur ren t  generation 
disadvantages and, even then, most epoxies and bismaleimides. 

o f  those are acceptable and can be Extensive use o f  composites w i l l  
d e a l t  wi th.  be tempered by costs and 

t h a t  dominates the t rade-of f  l i s t  cost/performance trade-of fs.  The 

and can t i p  the balance t o  TPs i s  t o t a l  performance character izat ion 

t h a t  o f  f a b r i c a t i o n  costs. o f  these p r m i  s ing  "new-improved" 
However, the p o t e n t i a l  f o r  low composite matrices (toughened 

cos t  manufacturing o f  TPs remains thermosets as we l l  as TPs) i s  

t o  be demonstrated. incomplete and new, un t r ied  
mater ia ls  w i l l  be introduced w i t h  

The one key element 

CHALLENGES caution. 

U t i l i z a t i o n  o f  TP composites w i l l  

r a i s e  some o f  the same performance 
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TABLE I 

ATTRACT I V E  FEATURES OFFERED BY THERflOPLAST I CS 
AS COflPOSlTE MATRICES 

@ POTENTIAL OF LON COST HANUFACTURING 
0 I NDEF I N  I TE PREPREG STAB1 L I TY 
0 THERHOFORHINC OF FLAT SHEET STOCK 
0 REPROCESSING TO CORRECT FLAWS 
0 FAST PROCESSING CYCLE 

0 H 1 GH TOUGHNESS (DAHA6E TOLERANCE 1 

@ EASY OUALITY CONTROL 

TABLE I 1  

PROBLEM TO RESOLVE WITH THERflOPLASTlC COHPOSITE flATRlCES 

0 QUALITY PREPREG 
0 DIFFICULT TO HAKE 
0 FIBER WETTING 
0 NOW-UNIFORHITY 
0 NO TACK 
0 NO DRAPE (UNLESS POWDER IHPRE6NATED) 
0 PROPER SIZ ING 

0 LAY-UP WITH BOARDY PREPREG 
0 COST OF TOOLING 
0 BAGGING HATERIALS 
0 HIGH TEHPERATURES 
0 HODERATE TO HIGH PRESSURES 

0 UNKNOWN FAT I GUE PERFORHANCE 
0 UNKNOWN CREEP BEHAVIOR 
0 SOLVENT SENSl T I V I  TY (EXCEPT SEfl l  -CRYSTALL1 NE POLYHERS 1 
0 CONTROL OF HORPHOLOGY WITH SEHl-CRYSTALLINE POLYflERS 

0 PROCESS I NG PROBLEMS 
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